Artificial leaf, a silicon-based device that uses solar energy to split hydrogen and oxygen in water, thereby producing hydrogen energy in a clean way, leaving virtually no pollutants. The technology, which was designed to simulate the natural energy-generating process of photosynthesis used by plants, was first successfully developed by American chemist Daniel G. Noceraand colleagues in 2011. Further work was needed to improve its efficiency and cost-effectiveness for practical use.
The basic component of an artificial leaf is a silicon chip that is coated in chemical catalysts, which speed up the water-splitting reaction. In an open vessel of water, when solar energy hits the chip, a chemical reaction similar to photosynthesis occurs—the hydrogen and oxygen molecules of water are split apart, resulting in the separation of protons and electrons. The protons and electrons are captured on the chip and are recombined to form hydrogen gas, which can be used for immediate generation of electricity or stored for later use.
The primary application of the artificial leaf is the clean production of hydrogen, which is considered an alternative form of energy.